Purely Cubic Complex Function Fields With Small Units

نویسنده

  • R. Scheidler
چکیده

We investigate several infinite families of purely cubic complex congruence function fields with small fundamental units. Specifically, we compute the fundamental units of fields K of unit rank 1 and characteristic not equal to 3 where the generator of K over Fq(t) is a cube root of D = (M3 − F )/E3 with E3 dividing M3 − F and F dividing M2. We also characterize all purely cubic complex function fields with regulator 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Units Generating the Ring of Integers of Complex Cubic Fields

All purely cubic fields such that their maximal order is generated by its units are determined.

متن کامل

Purely Cubic Function Fields With Short Periods

A “function field version” of Voronoi’s algorithm can be used to compute the fundamental unit of a purely cubic complex congruence function field of characteristic at least 5. This is accomplished by generating a sequence of minima in the maximal order of the field. The number of mimima computed is the period of the field. Generally, the period is very large — it is proportional to the regulato...

متن کامل

Voronoi’s Algorithm in Purely Cubic Congruence Function Fields

The first part of this paper classifies all purely cubic function fields over a finite field of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1 and characteristic at least 5. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in...

متن کامل

Ideal Arithmetic and Infrastructure in Purely Cubic Function Fields Ideal Arithmetic and Infrastructure in Purely Cubic Function Fields

This paper investigates the arithmetic of fractional ideals and the infrastructure of the principal ideal class of a purely cubic function eld of unit rank one. We rst describe how irreducible polynomials split into prime ideals in purely cubic function elds of nonzero unit rank. This decomposition behavior is used to compute so-called canonical bases of fractional ideals; such bases are very s...

متن کامل

Voronoi's algorithm in purely cubic congruence function fields of unit rank 1

The first part of this paper classifies all purely cubic function fields over a finite field of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1 and characteristic at least 5. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000